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Abstract

In this paper, we present a unified well-posed implicit formulation for nonlinear 2D Orr–Sommerfeld equation

(OSE) enabling straightforward, efficient computation of travelling wave and steady solutions. We illustrate the ease

and utility of our approach by computing classical travelling wave results of planar Poiseuille flows and novel steady

solutions of the perturbed planar Couette flow, employing the path-following software AUTO.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we consider the problem of computing travelling wave and steady solutions of the non-

linear Orr–Sommerfeld equation (OSE), cf. [1]. In particular, we present a formulation enabling straight-

forward, efficient computation of these solutions via standard path-following numerical techniques such as

provided in AUTO [5]. At first glance the problem appears innocuous – continuation based travelling wave

solutions of OSE can be found in papers as early as 1970s, see [22] for an early reference. However, the
nonlinear (as well as the linear) problem of OSE, which we consider here, requires satisfaction of no-slip

and impermeability boundary conditions on the channel walls. The no-slip boundary conditions occur as

algebraic constraints to be satisfied for all values of the axial co-ordinate x on the channel walls. Here in lies

the main difficulty – a travelling wave Hopf bifurcation problem after discretization becomes a differential

algebraic equation (DAE) – not ideal for standard continuation softwares. A typical resolution to this is to

discretize (in an a priori manner) the axial direction employing (usually) a Fourier basis and convert the

problem in to a purely algebraic problem. This approach, however, yields an ill-posed system with more

equations than unknowns and a standard resolution is to throw out certain high order algebraic equations
so as to make the discrete system of algebraic equations square. We note that this difficulty is present even
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in the linear problem (using collocation methods) and Chebyshev-tau method are used by introducing

additional unknowns (s) to make the discrete problem square, cf. [6]. The choice of Fourier bases also

restricts the applicability of the method to periodic boundary conditions along the axial direction. We are
not aware of any continuation studies that consider non-periodic boundary conditions for these problems.

Even though nonlinear solutions of OSE have been considered as early as Zahn et al. [22] and Herbert

[10] in 1970s, the first uniform treatment for computing travelling wave solutions with OSE appears in the

work of Milinazzo and Saffman [16]. The authors in this paper distinguish between the so-called uniform

average flux and the uniform average pressure situations for computing nonlinear travelling wave solutions

of parallel flows, and in particular of the planar Couette flow. With two Fourier modes, the authors were,

however, unable to obtain these solutions for the planar Couette flow. The approach considered in [16] is

further enunciated and used by Soibelman and Meiron [21], now with the purpose of computing travelling
wave solutions for planar Poiseuille flow.

Cherhabili and Ehrenstein [3,4] – motivated by the work of Milinazzo and Saffman [16] – re-visit the

problem of computing travelling wave solutions for planar Couette flow. The computational approach in

[3] employs a Fourier basis to discretize the resulting 2D OSE along the axial direction with a view of

obtaining an algebraic system of equations. In order to obtain a consistent set of equations, the authors use

an average x-momentum equation when considering the zero-mode of the Fourier bases – see [3,7] for

details on the discretization. The authors report that while they could not obtain solutions with two Fourier

modes, they were successful in obtaining solutions for planar Couette flow with a larger set of Fourier
modes. The authors also report appearance of localized structures and solutions that are nearly steady

(wave speed of the travelling wave is small).

In addition to the above, there is vast body of literature on discretizing the linear OSE primarily with an

objective of computing the spectrum, cf. [1] and the classical paper of Orszag [17] for an early reference.

Most of the recent computational approaches are based either upon the Chebyshev collocation method

[1,9,11] or the Chebyshev-tau method [1,6] and handle the boundary conditions explicitly. We note that the

computations involving the nonlinear problem – as is the focus of this study – are more involved than the

linear problem.
In this paper, we propose a Chebyshev collocation based approach for computing the continuation

based nonlinear solution branches (and also the linear spectrum) of the 2D OSE. There are two principal

ideas that make our approach novel. One, we use the formalism of Iooss et al. [13] and Iooss and Mielke

[12] for computing the steady and travelling wave solutions, respectively, with OSE. As these papers do for

the infinite-dimensional problem, we obtain a well-posed formulation for the discrete computational

problem, while suitably satisfying the boundary conditions. In order to do so, however, we use an implicit

scheme to appropriately fold the boundary conditions in – this constitutes the second novel idea of this

paper. We show that after discretization, our approach results in a well-posed boundary value problem,
whose solution may easily be obtained using standard path-following software such as AUTO. We note

that our approach provides a well-posed formulation independent of the choice of discretization along the x-

direction. Our approach also provides a unified framework for computing not only the travelling wave

solutions – in both constant average flux and constant average pressure cases [16] – but also for computing

certain steady wave solutions, where periodic boundary conditions may not necessarily apply.

The paper is organized as follows. In Section 2, we introduce the 2D OSE and contrast the objective of

our computational formalism with more traditional approaches. In Section 3, we present the implicit ap-

proach for computing the travelling wave solutions, describing the discretized equations for both the
constant average flux and the constant average pressure cases. In addition to the travelling wave solutions,

we also motivate the problem of computing steady solutions of planar Couette flow. We show that on

account of symmetry of the flow, computations must be carried out in a certain fixed-point-space. In this

fixed-point-space, computations necessarily lead to non-periodic boundary conditions. For such a problem,

we demonstrate the utility of our approach by obtaining a well-posed set of discretized equations quite
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simply. In Section 4, we validate the approach by replicating the standard linear spectrum, nonlinear local

bifurcation results and continuation based travelling solutions for planar Poiseuille flow. We also use the

framework outlined in Section 3 to compute certain steady solutions of the perturbed planar Couette flow.
Finally in Section 5, we draw some conclusions.
2. Orr–Sommerfeld equation

The purpose of this section is to present the computational formalism of our approach. We begin by

considering the two-dimensional (2D) incompressible Navier–Stokes Equation (NSE)

ou
ot

þ u:rð Þu ¼ �rp þ 1

Re
Du; ð1Þ
r:u ¼ 0; ð2Þ

where u ¼ ðu; vÞ is the 2D velocity vector,r ¼ ð o
ox ;

o
oyÞ is the gradient vector, p is the scalar pressure field and

Re is the Reynolds number. For bifurcation and continuation studies, it is useful to decompose the variables

as

u ¼ U þ u0; ð3Þ
p ¼ P þ p0; ð4Þ

where ðU ; P Þ is the basic solution and ðu0; p0Þ is the perturbation. For parallel flows, U ¼ ðUðyÞ; 0Þ and the

NSE (1) and (2) is easily expressed in the perturbation co-ordinates (after dropping primes) as

ou
ot

þ UðyÞ ou
ox

þ U 0ðyÞvþ u:rð Þu ¼ � op
ox

þ 1

Re
Du; ð5Þ
ov
ot

þ UðyÞ ov
ox

þ u:rð Þv ¼ � op
oy

þ 1

Re
Dv; ð6Þ
r:u ¼ 0: ð7Þ

For the 2D case, there exists a convenient co-ordinate change

u ¼ oW
oy

; v ¼ � oW
ox

ð8Þ

which allows one to express the three Eqs. (5)–(7) in three variables ðu; v; pÞ as a single equation in W.

Indeed the choice of the co-ordinate (8) automatically satisfies the divergence equation (7). Furthermore, on

substituting the co-ordinate (8) in to the Eqs. (5) and (6) and taking the curl, one obtains the stream

function formulation of NSE

o

ot

�
þ U

o

ox

�
DW� U 00ðyÞ oW

ox
� 1

Re
D2W ¼ � oW

oy
o

ox

�
� oW

ox
o

oy

�
DW: ð9Þ

The left-hand side of (9) is the linearization of the NSE (1) and (2) in W co-ordinate and is referred to

as the OSE. For our purpose, we shall refer to the complete equation (9) as the OSE simply using the
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prefix nonlinear in cases where confusion may likely arise as to which equation is meant. Needless to

say, the linearization is used for computing the spectrum while the nonlinear OSE is used for con-

tinuation studies.
The OSE (9) is supplemented by boundary conditions which for channel (such as Poiseuille, Plane

Couette) flows with boundaries at y ¼ �1 are
No slip ujy¼�1 ¼ þ oW
oy

����
y¼�1

¼ 0 and Impermeability vjy¼�1 ¼ � oW
ox

����
y¼�1

¼ 0 ð10Þ
together with periodic boundary conditions in x-direction (for the case of bounded rectangular domain). A

general solution of OSE (9) together with the boundary conditions (10) is W ¼ Wðx; y; tÞ. In this paper, we
are most concerned with special solutions: (a) Steady where W ¼ Wðx; yÞ and (b) Wave solutions where

W ¼ Wðx� ct; yÞ and c denotes the wave speed. Note that the steady solutions may be thought of as waves

with speed c ¼ 0. For these wave solutions expressed in the moving co-ordinate ðx0; yÞ with x0 ¼ x� ct, the
OSE (9) becomes (after dropping primes)
�
� cþ U

o

ox

�
DW� U 00ðyÞ oW

ox
� 1

Re
D2W ¼ � oW

oy
o

ox

�
� oW

ox
o

oy

�
DW: ð11Þ
In this paper, we formulate the computational problem for the wave OSE (11) together with its boundary

conditions (10) as
da
dx

¼ F ðaÞ; ð12Þ
a 2-point boundary value problem in independent variable x. Here, the symbol a denotes a finite-dimen-

sional representation of the streamfunction W½y�ðxÞ and its derivatives (along x). The bracket notation

symbolizes the fact that W is discretized along the y direction, but not along the axial direction. For in-

stance, with the Chebyshev collocation method used in this paper, the discrete representation is merely the
value ofW and of its axial derivatives at the collocation points. The symbol F denotes the finite-dimensional

representation of the nonlinear OSE in the finite-dimensional co-ordinate a. In the following sections, we

provide details about this computational formalism.

Before doing so, however, we contrast the above formalism with the standard approach to dis-

cretizing the OSE. Typically, the OSE is converted in to a system of algebraic equations (see, for e.g.

works of [3,21]) by choice of Fourier bases along the axial direction; periodic boundary conditions

along the axial direction are assumed. Among the system of algebraic equations are the equations

corresponding to the boundary conditions on the channel walls. In contrast, as described below, our
boundary conditions are implicitly folded in to the right-hand side – nonlinear finite-dimensional op-

erator F in Eq. (12). Our approach is quite independent of boundary conditions along the axial di-

rection (and these need not be periodic). The non-periodic boundary conditions arise, for instance, in

computations of steady solutions as described in Section 3.2. For the steady solutions, our computa-

tional approach in fact provides for a well-posed bifurcation and continuation scheme on an unbounded

axial domain – �a la theory of [13,14] – the steady solutions simply arise as a consequence of the Hopf

bifurcation of (12) with unbounded co-ordinate x replacing the more standard time co-ordinate. As a

result of these features, our approach provides for a unified 2-point boundary value framework for
handling the computations of a class of OSE solutions.
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3. Implicit discretization of the OSE

Computations with the linear and nonlinear problems associated with OSE (11) together with boundary
condition (10) is the focus of the present section. After Iooss and Mielke [13], we express (11) as a dif-

ferential equation in x-co-ordinate:

oW
ox

¼ W1; ð13Þ
oW1

ox
¼ �D2WþW2; ð14Þ
oW2

ox
¼ W3; ð15Þ
1

Re
oW3

ox
¼ � 1

Re
D2W2 � ðc� UÞW3 � U 00W1 þ DW:W3f �W1:DW2g; ð16Þ

where the operator D¼def o
oy. The term in curly brackets is zero for the linear problem. Eqs. (13)–(16) together

with the four boundary conditions:

DWðx; y ¼ þ1Þ ¼ 0; ð17Þ
DWðx; y ¼ �1Þ ¼ 0; ð18Þ
oW
ox

ðx; y ¼ þ1Þ ¼ 0; ð19Þ
oW
ox

ðx; y ¼ �1Þ ¼ 0 ð20Þ

constitute the system which needs to be discretized. For the steady problem, c ¼ 0 and bifurcating steady
nontrivial patterns arise when the linearization of (13)–(16) possesses eigenvalues that cross the imaginary

axis. If the eigenvalue is real, the resulting steady pattern will be x-uniform and if the eigenvalues are

imaginary then the pattern will show x-dependence related to the corresponding eigenfunction. For un-

steady problem, c is a basic unknown and either domain length in x-direction needs to be fixed (and pe-

riodic boundary conditions imposed) or c may be a priori specified and wavelength of the solution allowed

to vary.

A popular strategy to discretize the differential equations (13)–(16) together with boundary conditions

(17)–(20) is the so-called Chebyshev collocation method [1], where each of the continuous functions
ðWðyÞ;W1ðyÞ;W2ðyÞ;W3ðyÞÞ are represented by their discrete values ðW½j�;W1½j�;W2½j�;W3½j�Þ at the collo-

cation grid points

yj ¼ cos
pj
N

� �
; j ¼ 0; 1; . . . ;N ð21Þ

and the derivative D of variables in the right-hand side of Eqs. (13)–(16) and in boundary equations (17)–

(20) is evaluated at these grid points as (or in a manner analogous to)
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DWðyiÞ ¼
XN
j¼0

ðDN ÞljWðyjÞ; ð22Þ

whereD is the Chebyshev collocation differentiation matrix [1]. The computational problem is to obtain the

values of W at the N þ 1 discrete grid points in (21) – a total of N þ 1 unknowns W½j�; j ¼ 0; . . . ;N whose

differential equation (using (13)) is

oW½j�
ox

¼ W1½j�; 06 j6N ð23Þ

and whose solution requires knowledge of W1 and hence the solution of the corresponding differential
equation (using (14))

oW1½j�
ox

¼ �D2W½j� þW2½j�; 06 j6N ð24Þ

where D2W½j� denotes the values of D2W evaluated at the jth collocation grid point and the differential

equation for W2 (using (15)) is given by

oW2½j�
ox

¼ W3½j�; 06 j6N ð25Þ

for a total of 3ðN þ 1Þ equations in 4ðN þ 1Þ unknowns (values of ðW½j�;W1½j�;W2½j�;W3½j�Þ for 06 j6N ).

The OSE (16) solved at N interior collocation points

1

Re
oW3½j�
ox

¼ � 1

Re
D2W2½j� � ðc� UÞW3½j� � U 00½j�W1½j�

þ fDW½j� W3½j� �W1½j� DW2½j�g; 16 j6N � 1 ð26Þ

together with the boundary conditions (17) and (18)

oW½0�
ox

¼ 0; ð27Þ
oW½N �
ox

¼ 0 ð28Þ

provide the extra ðN þ 1Þ differential equations thereby yielding 4ðN þ 1Þ equations in as many unknowns.

The problem with this approach is the solution thus found need not satisfy the algebraic boundary con-

ditions arising from (19) to (20)
DW½0�ðxÞ ¼ 0; ð29Þ
DW½N �ðxÞ ¼ 0: ð30Þ

So, the complete system whose solution we would like to determine is the DAE (Eqs. (23)–(30)). We note

that the algebraic equations (29) and (30) must be satisfied for all x in the domain.

One possible resolution to to the above problem is to express the W½j�ðxÞ in Fourier bases thereby

converting the entire system in to an algebraic problem. This is the spirit of analysis done by several authors

including [3,21]. However, we are interested in obtaining a formulation consisting of differential equations
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only with the purpose of using AUTO for continuation of nonlinear solutions. For this purpose, we

propose an implicit formulation of the problem where the Neumann boundary conditions (29) and (30) are

folded into the differential equation.
The implicit formulation works by replacing the DW terms on the right-hand side of differential equa-

tions (23)–(26) by D̂W where

D̂ ¼
0 � � � 0

Dð2 : N ; :Þ
0 � � � 0

2
4

3
5: ð31Þ

The implicit approach has been suggested by [1] for the linear problem (where nonlinear terms on right-

hand side of Eq. (11) are absent). We note, however, that the implicit approach does not buy a whole lot for
the linear problem because of the relative ease of handling the linear problem using Fourier bases (where

the individual modal components decouple). However, for the nonlinear problem, all of the different

Fourier modal components are coupled (in a convolution manner) due to the nonlinear product term on the

right-hand side of (11). This makes the approach presented below ideal for the nonlinear continuation

problems.

The boundary conditions (27) and (28) set the values of

W1½j� ¼ 0; j ¼ 0;N ; ð32Þ

We thus have N � 1 differential equations defining W1½j� at interior collocation points (using (23))

oW½j�
ox

¼ W1½j�; 16 j6N � 1: ð33Þ

Eq. (24) now defines W2 as N � 1 interior collocation points with the implicit modification given as

oW1½j�
ox

¼ �DD̂W½j� þW2½j�; 16 j6N � 1 ð34Þ

and due to (32), we have

W2½j�ðxÞ ¼ DD̂W½j�ðxÞ; j ¼ 0;N : ð35Þ

As before in (25), we have (now only at interior collocation points)

oW2½j�
ox

¼ W3½j�; 16 j6N � 1: ð36Þ

and the OSE (26) becomes

1

Re
oW3½j�
ox

¼ � 1

Re
D2W2½j� �

1

Re
D2ðj; ½0;N �ÞW2ð½0;N �Þ

� �
� ðc� UÞW3½j� � U 00½j�W1½j�

þ DW½j�W3½j�f �W1½j�DW2½j� � W1½j�Dðj; ½0;N �ÞW2ð½0;N �Þ½ �g; 16 j6N � 1 ð37Þ

where the terms in square brackets are the corrector terms that arise due to (35) and capture the contri-

bution of W2½0� and W2½N � on the OSE. Finally, we note that the two boundary conditions (27) and (28)

yield W½j�ðxÞ for j ¼ 0;N to be constants

W½j�ðxÞ ¼ Cj; j ¼ 0;N ð38Þ
to be shortly set. Since, W is uniquely defined only up to a constant, we arbitrarily set C0 ¼ 0, i.e.,

W½0� ¼ 0: ð39Þ
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To define CN uniquely, we require an extra condition. The indeterminacy arises due to the arbitrariness in

the choice of the basic flow velocity [21]. There are two ways discussed in literature to impose this extra

condition [16]. Below, we discuss the implicit formulation in either cases, showing each case to yield a well-
posed boundary value problem.
3.1. Travelling wave solutions

One way to impose the extra condition is to require no perturbation to the average flux [21], i.e.,

Z L

0

Z 1

�1

u dy dx; ð40Þ

which after substituting the definition for streamfunction yields

CN ¼ C0; ð41Þ
i.e.,

W½N � ¼ 0: ð42Þ

This gives rise to the following 4ðN � 1Þ differential equations:

oW½j�
ox

¼ W1½j�; 16 j6N � 1; ð43Þ
oW1½j�
ox

¼ �DD̂ðj; 1 : N � 1ÞWþW2½j�; 16 j6N � 1; ð44Þ
oW2½j�
ox

¼ W3½j�; 16 j6N � 1; ð45Þ
1

Re
oW3½j�
ox

¼ � 1

Re
D2ðj; 1 : N � 1ÞW2 �

1

Re
D2ðj; ½0;N �ÞDD̂ð½0;N �; 1 : N

�
� 1ÞW

�

� ðc� UÞW3½j� � U 00½j�W1½j� þ Dðj; 1 : N
n

� 1ÞWW3½j� �W1½j�Dðj; 1 : N � 1ÞW2

� W1½j�Dðj; ½0;N �ÞDD̂ð½0;N �; 1 : N
h

� 1ÞW
io

; 16 j6N � 1 ð46Þ

in 4ðN � 1Þ unknowns – values of ðW½j�;W1½j�;W2½j�;W3½j�Þ at the N � 1 interior collocation grid points

given by (21). The boundary conditions have been incorporated implicitly in to the formulation. The term
in the curly brackets is zero for the linear problem and the terms in square brackets are the corrector terms.

The second way to impose the extra condition is to require no perturbation to the average pressure which

leads to (see [21])Z L

0

o2W
oy2

ðy ¼ þ1; xÞ � o2W
oy2

ðy ¼ �1; xÞ dx ¼ 0: ð47Þ

Using the implicit notation, this implies

Z L

0

DD̂W½0�ðxÞ �DD̂W½N �ðxÞ ¼ 0: ð48Þ
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Therefore,Z L

0

W2½0�ðxÞ �W2½N �ðxÞ dx ¼ 0: ð49Þ

Since CN is a non-zero unknown in the zero average pressure condition above, we are led to the following

4ðN � 1Þ differential equations:

oW½j�
ox

¼ W1½j�; 16 j6N � 1; ð50Þ
oW1½j�
ox

¼ �DD̂ðj; 1 : N � 1ÞW�DD̂ðj;NÞCN þW2½j�; 16 j6N � 1; ð51Þ
oW2½j�
ox

¼ W3½j�; 16 j6N � 1; ð52Þ
1

Re
oW3½j�
ox

¼ � 1

Re
D2ðj; 1 : N � 1ÞW2 �

1

Re
D2ðj; ½0;N �ÞDD̂ð½0;N �; 1 : N

�
� 1ÞW

� 1

Re
D2ðj; ½0;N �ÞDD̂ð½0;N �;NÞCN

�
� ðc� UÞW3½j�

� U 00½j�W1½j� þ Dðj; 1 : N
n

� 1ÞWW3½j�

�W1½j�Dðj; 1 : N � 1ÞW2 � W1½j�Dðj; ½0;N �ÞDD̂ð½0;N �; 1 : N
h

� 1ÞW

þW1½j�Dðj; ½0;N �ÞDD̂ð½0;N �;NÞCN

io
; 16 j6N � 1 ð53Þ

in 4ðN � 1Þ þ 1 unknowns – values of ðW½j�;W1½j�;W2½j�;W3½j�Þ at the N � 1 interior collocation grid points

given by (21) and the unknown constant CN . The integral zero average pressure condition

Z L

0

W2½0�ðxÞ �W2½N �ðxÞ dx ¼ 0 ð54Þ

is the extra equation for the resulting constrained system of equations to be well-posed.

Both the zero average flux case (Eqs. (43)–(46)) as well as the zero average pressure case (Eqs. (50)–(53))

together with the integral constraint (54)) yield a well-posed formulation for carrying out computations of

the travelling wave solutions. Moreover, the 2-point BVP framework allows standard continuation codes

such as AUTO [5] to be easily used for computing these solutions.
3.2. Steady solutions

In addition to the travelling wave solutions, we also use the above formulation to compute steady so-

lutions. For problems with SO(2) spatial symmetry along the axial direction (e.g. planar Poiseuille flow),

the computations of steady solutions are straightforward. One merely chooses c ¼ 0 and the steady solu-

tions arise simply as the spatial Hopf bifurcation – with the co-ordinate x substituting for the more familiar

time t. In this context, the framework outlined for the travelling wave solutions above applies – for both

constant average flux and average pressure cases. However, for many problems in fluid dynamics (for e.g.
planar Couette flow), the presence of large (O(2) in the case of planar Couette flow) symmetry group leads
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to the presence of multi-dimensional eigenspace [20] at the bifurcation point. For such problems, fixed-

point-space computations are necessary for obtaining isolated solution branches using standard continu-

ation schemes such as AUTO. In a fixed-point-space, however, the periodic boundary conditions need not
apply and it is here, the unified boundary value problem framework developed in this paper becomes useful.

Below, we present these ideas for the special case of planar Couette flow.

The equations of motion for the planar Couette flow are O(2) (spatial symmetry group) equivariant [15].

In the streamfunction co-ordinate, the symmetry group induces an action

SOð2Þ : sa½Wðx; yÞ� ¼ Wðxþ a; yÞ 8a 2 Rðmod 2pÞ ð55Þ
Z2 : r½Wðx; yÞ� ¼ Wð�x;�yÞ: ð56Þ

The presence of O(2) symmetry group leads to the occurrence of a multi-dimensional eigenspace at the

bifurcation point, if indeed such a point exists. For the unsteady O(2) Hopf situation, the symmetry

leads to two pairs of imaginary eigenvalues – corresponding to forward and backward travelling waves.

For the steady O(2) bifurcation problem, the symmetry leads to double real eigenvalues. The occurrence

of multiple eigenvalues requires fixed-point-space computations in order to compute an isolated branch

of solutions. Below, we describe such a framework for computing steady solutions, i.e., solutions such
that

o

ot
¼ 0; ð57Þ

and the streamfunction

W ¼ Wðx; yÞ: ð58Þ

For the O(2) equivariant group, the fixed-point-space corresponding to the isotropy subgroup Z2 yields an
isolated branch of solution [8]. Using Eq. (56), the Z2 fixed-point-space may be defined as the space of

functions satisfying

Wðx; yÞ ¼ Wð�x;�yÞ; ð59Þ

on the rectangular domain ½� L
2
; L
2
� � ½�1; 1�. The pattern resulting from (59) is schematically drawn in

Fig. 1. We may carry out the fixed-point-space computations on the half-domain ½0; L
2
� � ½�1; 1� either using

zero average flux equations (43)–(46) or the zero average pressure equations (50)–(53). In either case, the

periodic boundary conditions along the x-direction are replaced by the boundary conditions consistent with

the pattern (59). These boundary conditions for the continuous problem are given by

Wðx ¼ 0; yÞ ¼ Wðx ¼ 0;�yÞ 8y 2 ð0; 1Þ; ð60Þ
W x
�

¼ L
2
; y
�

¼ W x
�

¼ L
2
;� y

�
8y 2 ð0; 1Þ; ð61Þ
Wxðx ¼ 0; yÞ ¼ �Wxðx ¼ 0;�yÞ 8y 2 ð0; 1Þ; ð62Þ
Wx x
�

¼ L
2
; y
�

¼ �Wx x
�

¼ L
2
;� y

�
8y 2 ð0; 1Þ; ð63Þ
Wxðx ¼ 0; y ¼ 0Þ ¼ 0; ð64Þ



Fig. 1. Z2 symmetric pattern satisfying Eq. (59).
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Wx x
�

¼ L
2
; y ¼ 0

�
¼ 0; ð65Þ
DWðx ¼ 0; yÞ ¼ DWðx ¼ 0;�yÞ 8y 2 ð0; 1Þ; ð66Þ
DW x
�

¼ L
2
; y
�

¼ DW x
�

¼ L
2
;� y

�
8y 2 ð0; 1Þ; ð67Þ
DWxðx ¼ 0; yÞ ¼ �DWxðx ¼ 0;�yÞ 8y 2 ð0; 1Þ; ð68Þ
DWx x
�

¼ L
2
; y
�

¼ �DWx x
�

¼ L
2
;� y

�
8y 2 ð0; 1Þ; ð69Þ
DWxðx ¼ 0; y ¼ 0Þ ¼ 0; ð70Þ
DWxðx ¼
L
2
; y ¼ 0Þ ¼ 0: ð71Þ

The boundary conditions for the discrete problem with N collocation points are:

W½j�ðx ¼ 0Þ ¼ W½N � j�ðx ¼ 0Þ; ð72Þ
W½j� x
�

¼ L
2

�
¼ W½N � j� x

�
¼ L

2

�
; ð73Þ
W1½j�ðx ¼ 0Þ ¼ �W1½N � j�ðx ¼ 0Þ; ð74Þ
W1½j� x
�

¼ L
2

�
¼ �W1½N � j� x

�
¼ L

2

�
; ð75Þ
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W2½j�ðx ¼ 0Þ ¼ W2½N � j�ðx ¼ 0Þ; ð76Þ
W2½j� x
�

¼ L
2

�
¼ W2½N � j� x

�
¼ L

2

�
; ð77Þ
W3½j�ðx ¼ 0Þ ¼ �W3½N � j�ðx ¼ 0Þ; ð78Þ
W3½j� x
�

¼ L
2

�
¼ �W3½N � j� x

�
¼ L

2

�
: ð79Þ

For an odd value of N , j ¼ 1; . . . ; N�1
2

and the above boundary conditions suffice. However, for an even

value of N , j ¼ 1; . . . ; N
2
� 1 and we have the following extra boundary conditions:

W1

N
2

� �
ðx ¼ 0Þ ¼ 0; ð80Þ
W1

N
2

� �
x

�
¼ L

2

�
¼ 0; ð81Þ
W3

N
2

� �
ðx ¼ 0Þ ¼ 0; ð82Þ
W3

N
2

� �
x

�
¼ L

2

�
¼ 0: ð83Þ

In either case, a well-posed boundary value problem results with as many boundary conditions as the

4� N � 4 ODE (43)–(46).
In the following section, we present some examples meant to validate the formulation (43)–(46) pre-

sented above with some published results. For the nonlinear bifurcation and continuation studies, the

program AUTO [5] was used. A detailed code listing for this together with a computational guide including

discussion on computational issues appears in [15].
4. Examples

We present results computed using Eqs. (43)–(46) for the following three examples:

4.1. Linear spectrum example

In this example, we compute the linear spectrum of Plane Couette flow and compare it against the results

of [6]. Fig. 2 plots the numerically computed spectrum at Re ¼ 3500, a ¼ 1 using K ¼ 200 Chebyshev

modes. These computations are carried out in MATLAB using 64 bit arithmetic. The choice of the Rey-

nolds number is due to the fact that above Re ¼ 3500, the computation of eigenvalues breaks down. Even at
the Reynolds number of 3500, as seen in the figure, the so-called tail of the spectrum (where the eigenvalues

are expected to have zero imaginary part) shows discrepancies from the expected solution. This observa-

tions are consistent with [6] who reported similar behavior with 64 bit arithmetic. In Table 1, we compare

the eigenvalues obtained with the implicit method, now for Re ¼ 13,000, to those reported in [6] for the first



Fig. 2. Numerically computed spectrum of planar Couette flow at Re ¼ 3500, a ¼ 1 using K ¼ 200 Chebyshev modes.

Table 1

The first 15 eigenvalues compared with Dongarra’s results [6] (K ¼ 200, Re ¼ 13,000, a¼ 1)

# Eigenvalue (64 bit computations) Dongarra’s eigenvalue [6] (128 bit)

1 )0.04751565735� 0.82761545888i )0.04751548439� 0.8276152337i

2 0.10916233090� 0.73179748710i )0.1091860424� 0.7318167785i

3 0.12788692688� 0.86944989709i )0.1279149536� 0.8694486153i

4 0.15940221500� 0.65168384313i )0.1594003003� 0.6516804277i

5 0.18053506749� 0.76712088000i )0.1805164930� 0.7671186628i

6 0.20355912367� 0.58016155986i )0.2035572830� 0.5801567166i

7 0.22517251154� 0.68283374656i )0.2251746419� 0.6828371673i

8 0.24374083416� 0.51444025167i )0.2437675825� 0.5143995235i

9 0.26531490806� 0.60811869339i )0.2653481107� 0.6082408213i

10 0.28115172316� 0.45299528229i )0.2811241939� 0.4528935800i

11 0.30216857441� 0.54001675911i )0.3024678732� 0.5400219613i

12 0.31629839110� 0.39473406600i )0.3162828159� 0.3947096982i

13 0.33723447385� 0.47637056686i )0.3373108149� 0.4764491821i

14 0.34646662472� 0.31977167963i )0.3496747907� 0.3392256967i

15 0.34744532686� 0.27061969756i )0.3703603829� 0.4164746866i
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14 modes which we are able to compute satisfactorily. For the purposes of comparison, we adapted the

method described above to be consistent with the so-called D2 method used in [6].

4.2. Weak nonlinear analysis example

In this example, we present the computational results determining the so-called Landau constant using

the Joseph–Sattinger perturbation series method [19] for the local analysis of the first bifurcation point of
planar Poiseuille flow. We compare these results with the results of [2]. Fig. 3 plots the spectrum of the



Fig. 3. Numerically computed spectrum of planar Poiseuille flow at the critical Reynolds number Re ¼ 5772, a ¼ 1:02 using K ¼ 200

Chebyshev modes.
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Planar Poiseuille flow for the critical Reynolds number Re ¼ 5772, where the basic parallel flow solution

loses stability and undergoes a Hopf bifurcation thereby yielding a subcritical travelling wave solution. For

this travelling wave solution, a perturbation series is constructed using the Joseph–Sattinger method and

the computations are carried out using the computational formulation described in Section 3.1. Table 2
compares the numerical results with the results of [2]: c is the wave speed, f0 is the speed at which the real

part of the eigenvalue crosses the imaginary axis, k2 is the Landau constant and x2 is the value for the

nonlinear perturbation of frequency along the bifurcating branch.

4.3. Continuation for travelling wave solution

In this example, we use AUTO to continue globally the primary bifurcating branch of the Planar

Poiseuille flow. Fig. 4 plots the wave speed c of the bifurcating solution against the Reynolds number. The
bifurcating solution is subcritical, consistent with the analysis above. The bifurcating branch shows a limit

point at Reynolds number of about 4400, consistent with the computations of [22].

4.4. Continuation for steady solution

The purpose of this section is to present results utilizing the fixed-point-space computational framework

discussed in Section 3.2. The framework presented therein was primarily motivated for continuing steady

solutions of planar Couette flow, which has an O(2) symmetry group. However, though the planar Couette
Table 2

Summary of the weak nonlinear analysis computations for the planar Poiseuille flow’s primary bifurcating branch

Implicit computations Chen and Joseph [2]

c f0 k2 x2 c f0 k2 x2

0.2692 56.18 0.499 304.54 0.2640 56.10 0.556 323.42



Fig. 4. Wave speed cðReÞ of the primary bifurcating travelling wave branch for planar Poiseuille flow.
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flow has real eigenvalues, they remain in the left half plane for all finite values of Reynolds number [18], and
as a result the basic laminar solution does not bifurcate.

In order to cause the planar Couette flow to bifurcate, we perturb it with the objective of causing one of

the real eigenvalues to cross the imaginary axis. Perturbations that cause the planar Couette flow to bifurcate
Fig. 5. Bifurcation diagram for perturbed planar Couette flow.



Fig. 6. Streamlines for perturbed planar Couette flow for � ¼ 0:05, Re ¼ 255: ‘x’ denote the collocation points along the axial direction.

Note the cluster around the localized structure which is resolved by the computational method.

556 P.G. Mehta / Journal of Computational Physics 199 (2004) 541–557
have been considered before in [3,16], who used a Poiseuille–Couette homotopy to perturb the planar

Couette flow. However, this homotopy destroys the O(2) equivariance of the planar Couette flow. In order to

preserve the O(2) equivariance and still cause the flow to bifurcate, we use an identity homotopy that per-

turbs the Navier–Stokes equations by simply adding �I . The homotopy parameter � is chosen to be suitably

large so as to cause a real eigenvalue to cross the imaginary axis for a finite value of Reynolds number [15].

Fig. 5 depicts the bifurcation diagram for a choice of identity perturbation with � ¼ 0:05 and a ¼ 0:2.
The steady solutions were obtained by detecting bifurcation (for the perturbed planar Couette flow) and
continuing along the fixed-point-space using the framework described in Section 3.2. Fig. 6 presents the

streamlines for a solution along the bifurcating branch. It shows the presence of localized structures of the

kind described in the work of [3] and the computational technique used adaptive meshing along the axial

direction (available in AUTO) to resolve these structures accurately. Additional details on the structure of

steady solutions of perturbed Couette flow and their relation to the planar Couette flow appear in [15] and

will be presented separately.
5. Conclusion

In this paper, we have presented a unified approach for computing travelling wave and steady solutions

of parallel flow problems using continuation methods. The computational framework developed in this

paper yields a well-posed two point boundary value problem suitable for detecting bifurcations and car-

rying out continuation with AUTO.

Compared to standard approaches which employ Fourier bases to discretize the equation along the axial

direction, the method is more general and offers several advantages. Apart from its ability to handle non-
periodic boundary conditions, its greatest advantage is the ease with which the equations of motion may be

used in AUTO. Once the Chebyshev collocation differentiation matrix is computed, specifying the right-

hand side of the boundary value problem for either the constant flux case equations (43)–(46) or the zero

average pressure case equations (50)–(53) can be implemented using four straightforward loops. Continu-

ation schemes such as AUTO also allow for symbolic representation of Jacobian and derivatives with

respect to parameters, which too are straightforward (about an arbitrary nonlinear solution) to obtain –
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simply take the Jacobian of the right-hand side. In contrast, representation and coding the nonlinear terms

(which arise as a consequence of convolution) after using Fourier bases is much more cumbersome. Our

approach is easier because the product nature of the nonlinearity present in the original equations is
preserved in the discretized equations.

Finally, the localized structures such as shown in Fig. 6 have been seen in computations of [3] and

difficult to resolve using Fourier bases; see also [16] and discussion in [3] on the sensitivity of solutions to the

number of Fourier bases. For this purpose, if not other, continuation approaches such as AUTO which

employ (user transparent) collocation methods for discretization and adaptive griding are useful to con-

tinue solutions with localized structures: our approach is tailor-made to harness this power.
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